Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

UV light emitting transparent conducting tin-doped indium oxide (ITO) nanowires.

Identifieur interne : 001060 ( Main/Exploration ); précédent : 001059; suivant : 001061

UV light emitting transparent conducting tin-doped indium oxide (ITO) nanowires.

Auteurs : RBID : pubmed:21430316

English descriptors

Abstract

Multifunctional single crystalline tin-doped indium oxide (ITO) nanowires with tuned Sn doping levels are synthesized via a vapor transport method. The Sn concentration in the nanowires can reach 6.4 at.% at a synthesis temperature of 840 °C, significantly exceeding the Sn solubility in ITO bulks grown at comparable temperatures, which we attribute to the unique feature of the vapor-liquid-solid growth. As a promising transparent conducting oxide nanomaterial, layers of these ITO nanowires exhibit a sheet resistance as low as 6.4 Ω/[Symbol: see text] and measurements on individual nanowires give a resistivity of 2.4 × 10(-4) Ω cm with an electron density up to 2.6 × 10(20) cm(-3), while the optical transmittance in the visible regime can reach ∼ 80%. Under the ultraviolet excitation the ITO nanowire samples emit blue light, which can be ascribed to transitions related to defect levels. Furthermore, a room temperature ultraviolet light emission is observed in these ITO nanowires for the first time, and the exciton-related radiative process is identified by using temperature-dependent photoluminescence measurements.

DOI: 10.1088/0957-4484/22/19/195706
PubMed: 21430316

Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">UV light emitting transparent conducting tin-doped indium oxide (ITO) nanowires.</title>
<author>
<name sortKey="Gao, J" uniqKey="Gao J">J Gao</name>
<affiliation wicri:level="1">
<nlm:affiliation>Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore.</nlm:affiliation>
<country xml:lang="fr">Singapour</country>
<wicri:regionArea>Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Chen, R" uniqKey="Chen R">R Chen</name>
</author>
<author>
<name sortKey="Li, D H" uniqKey="Li D">D H Li</name>
</author>
<author>
<name sortKey="Jiang, L" uniqKey="Jiang L">L Jiang</name>
</author>
<author>
<name sortKey="Ye, J C" uniqKey="Ye J">J C Ye</name>
</author>
<author>
<name sortKey="Ma, X C" uniqKey="Ma X">X C Ma</name>
</author>
<author>
<name sortKey="Chen, X D" uniqKey="Chen X">X D Chen</name>
</author>
<author>
<name sortKey="Xiong, Q H" uniqKey="Xiong Q">Q H Xiong</name>
</author>
<author>
<name sortKey="Sun, H D" uniqKey="Sun H">H D Sun</name>
</author>
<author>
<name sortKey="Wu, T" uniqKey="Wu T">T Wu</name>
</author>
</titleStmt>
<publicationStmt>
<date when="2011">2011</date>
<idno type="doi">10.1088/0957-4484/22/19/195706</idno>
<idno type="RBID">pubmed:21430316</idno>
<idno type="pmid">21430316</idno>
<idno type="wicri:Area/Main/Corpus">001488</idno>
<idno type="wicri:Area/Main/Curation">001488</idno>
<idno type="wicri:Area/Main/Exploration">001060</idno>
</publicationStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Electrochemistry (methods)</term>
<term>Light</term>
<term>Materials Testing</term>
<term>Metal Nanoparticles (chemistry)</term>
<term>Microscopy, Electron, Scanning (methods)</term>
<term>Microscopy, Electron, Transmission (methods)</term>
<term>Nanotechnology (methods)</term>
<term>Nanowires (chemistry)</term>
<term>Silicon (chemistry)</term>
<term>Spectrophotometry, Ultraviolet (methods)</term>
<term>Temperature</term>
<term>Tin (chemistry)</term>
<term>Tin Compounds (chemistry)</term>
<term>X-Ray Diffraction</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Silicon</term>
<term>Tin</term>
<term>Tin Compounds</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>Metal Nanoparticles</term>
<term>Nanowires</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Electrochemistry</term>
<term>Microscopy, Electron, Scanning</term>
<term>Microscopy, Electron, Transmission</term>
<term>Nanotechnology</term>
<term>Spectrophotometry, Ultraviolet</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Light</term>
<term>Materials Testing</term>
<term>Temperature</term>
<term>X-Ray Diffraction</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Multifunctional single crystalline tin-doped indium oxide (ITO) nanowires with tuned Sn doping levels are synthesized via a vapor transport method. The Sn concentration in the nanowires can reach 6.4 at.% at a synthesis temperature of 840 °C, significantly exceeding the Sn solubility in ITO bulks grown at comparable temperatures, which we attribute to the unique feature of the vapor-liquid-solid growth. As a promising transparent conducting oxide nanomaterial, layers of these ITO nanowires exhibit a sheet resistance as low as 6.4 Ω/[Symbol: see text] and measurements on individual nanowires give a resistivity of 2.4 × 10(-4) Ω cm with an electron density up to 2.6 × 10(20) cm(-3), while the optical transmittance in the visible regime can reach ∼ 80%. Under the ultraviolet excitation the ITO nanowire samples emit blue light, which can be ascribed to transitions related to defect levels. Furthermore, a room temperature ultraviolet light emission is observed in these ITO nanowires for the first time, and the exciton-related radiative process is identified by using temperature-dependent photoluminescence measurements.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Owner="NLM" Status="MEDLINE">
<PMID Version="1">21430316</PMID>
<DateCreated>
<Year>2011</Year>
<Month>03</Month>
<Day>25</Day>
</DateCreated>
<DateCompleted>
<Year>2011</Year>
<Month>07</Month>
<Day>15</Day>
</DateCompleted>
<DateRevised>
<Year>2013</Year>
<Month>11</Month>
<Day>21</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1361-6528</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>22</Volume>
<Issue>19</Issue>
<PubDate>
<Year>2011</Year>
<Month>May</Month>
<Day>13</Day>
</PubDate>
</JournalIssue>
<Title>Nanotechnology</Title>
<ISOAbbreviation>Nanotechnology</ISOAbbreviation>
</Journal>
<ArticleTitle>UV light emitting transparent conducting tin-doped indium oxide (ITO) nanowires.</ArticleTitle>
<Pagination>
<MedlinePgn>195706</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1088/0957-4484/22/19/195706</ELocationID>
<Abstract>
<AbstractText>Multifunctional single crystalline tin-doped indium oxide (ITO) nanowires with tuned Sn doping levels are synthesized via a vapor transport method. The Sn concentration in the nanowires can reach 6.4 at.% at a synthesis temperature of 840 °C, significantly exceeding the Sn solubility in ITO bulks grown at comparable temperatures, which we attribute to the unique feature of the vapor-liquid-solid growth. As a promising transparent conducting oxide nanomaterial, layers of these ITO nanowires exhibit a sheet resistance as low as 6.4 Ω/[Symbol: see text] and measurements on individual nanowires give a resistivity of 2.4 × 10(-4) Ω cm with an electron density up to 2.6 × 10(20) cm(-3), while the optical transmittance in the visible regime can reach ∼ 80%. Under the ultraviolet excitation the ITO nanowire samples emit blue light, which can be ascribed to transitions related to defect levels. Furthermore, a room temperature ultraviolet light emission is observed in these ITO nanowires for the first time, and the exciton-related radiative process is identified by using temperature-dependent photoluminescence measurements.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Gao</LastName>
<ForeName>J</ForeName>
<Initials>J</Initials>
<Affiliation>Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore.</Affiliation>
</Author>
<Author ValidYN="Y">
<LastName>Chen</LastName>
<ForeName>R</ForeName>
<Initials>R</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Li</LastName>
<ForeName>D H</ForeName>
<Initials>DH</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Jiang</LastName>
<ForeName>L</ForeName>
<Initials>L</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Ye</LastName>
<ForeName>J C</ForeName>
<Initials>JC</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Ma</LastName>
<ForeName>X C</ForeName>
<Initials>XC</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Chen</LastName>
<ForeName>X D</ForeName>
<Initials>XD</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Xiong</LastName>
<ForeName>Q H</ForeName>
<Initials>QH</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Sun</LastName>
<ForeName>H D</ForeName>
<Initials>HD</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Wu</LastName>
<ForeName>T</ForeName>
<Initials>T</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType>Journal Article</PublicationType>
<PublicationType>Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2011</Year>
<Month>03</Month>
<Day>23</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Nanotechnology</MedlineTA>
<NlmUniqueID>101241272</NlmUniqueID>
<ISSNLinking>0957-4484</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance>Tin Compounds</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>71243-84-0</RegistryNumber>
<NameOfSubstance>indium tin oxide</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>7440-31-5</RegistryNumber>
<NameOfSubstance>Tin</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>Z4152N8IUI</RegistryNumber>
<NameOfSubstance>Silicon</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName MajorTopicYN="N">Electrochemistry</DescriptorName>
<QualifierName MajorTopicYN="N">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N">Light</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N">Materials Testing</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N">Metal Nanoparticles</DescriptorName>
<QualifierName MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N">Microscopy, Electron, Scanning</DescriptorName>
<QualifierName MajorTopicYN="N">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N">Microscopy, Electron, Transmission</DescriptorName>
<QualifierName MajorTopicYN="N">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N">Nanotechnology</DescriptorName>
<QualifierName MajorTopicYN="Y">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N">Nanowires</DescriptorName>
<QualifierName MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N">Silicon</DescriptorName>
<QualifierName MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N">Spectrophotometry, Ultraviolet</DescriptorName>
<QualifierName MajorTopicYN="Y">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N">Temperature</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N">Tin</DescriptorName>
<QualifierName MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N">Tin Compounds</DescriptorName>
<QualifierName MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N">X-Ray Diffraction</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="aheadofprint">
<Year>2011</Year>
<Month>3</Month>
<Day>23</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2011</Year>
<Month>3</Month>
<Day>25</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2011</Year>
<Month>3</Month>
<Day>25</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2011</Year>
<Month>7</Month>
<Day>16</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pii">S0957-4484(11)77576-6</ArticleId>
<ArticleId IdType="doi">10.1088/0957-4484/22/19/195706</ArticleId>
<ArticleId IdType="pubmed">21430316</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV2/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001060 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001060 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV2
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:21430316
   |texte=   UV light emitting transparent conducting tin-doped indium oxide (ITO) nanowires.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:21430316" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a IndiumV2 

Wicri

This area was generated with Dilib version V0.5.76.
Data generation: Tue May 20 07:24:43 2014. Site generation: Thu Mar 7 11:12:53 2024